参考文献
参考文献
1. Ling, V., Thompson, L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell Physiol. 1974, 83, 103–116.
2. Juliano, R. L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 1976, 455, 152–162.
3. Singh, B.; Kumar, A.; Joshi, P.; Guru, S. K.; Kumar, S.; Wani, Z. A.; Mahajan, G.; Hussain, A.; Qazi, A. K.; Kumar, A.; et al. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem. 2015, 13, 5674–5689.
4. Danø, K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. Acta 1973, 323, 466–483.
5. Aller, S G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q.; Urbatsch, I. L.; et al. Structure of P-glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding. Science 2009, 323, 1718–1722.
6. Higgins, C. F.; Gottesman, M. M. Is the multidrug transporter a flippase? Trends Biochem. Sci. 1992, 17, 18–21.
7. Seelig, A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front. Oncol. 2020, 10, 576559.
8. Kodan, A.; Futamata, R.; Kimura, Y.; Kioka, N.; Nakatsu, T.; Kato, H.; Ueda, K. ABCB1/MDR1/P-gp employs an ATP-dependent twist-and-squeeze mechanism to export hydrophobic drug. FEBS Lett. 2021, 595, 707–716.
9. Scala, St.; Akhmed, N.; Rao, U. S.; Paull, K.; Lan, L.-B.; Dickstein, B.; Lee, J.-S.; Elgemeie, G. H.; Stein, W. D.; Bates, S. E. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol. Pharmacol. 1997, 51, 1024–1033.
10. Didziapetris, R.; Japertas, P.; Avdeef, A.; Petrauskas, A. Classification Analysis of P-Glycoprotein Substrate Specificity. J. Drug Target. 2003, 11, 391–406.
11. Zhang, H.; Xu, H.; Ashby, C. R. Jr.; Assaraf, Y. G.; Chen, Z.-S.; Liu, H.M. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med. Res. Rev. 2021, 41, 525–555.
12. Dong, J.; Qin, Z.; Zhang, W.-D.; Cheng, G.; Yehuda, A. G; Ashby, C. R Jr; Chen, Z.-S.; Cheng, X.-D.; Qin, J.-J. Medicinal Chemistry Strategies to Discover P-glycoprotein Inhibitors: An Update. Drug Resist. Updat. 2020, 49, 100681.
13. Jaramillo, A. C.; Saig, F. A.; Cloos, J.; Jansen, J.; Peters, G. J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist 2018, 1, 6–29.
14. Waghray, D.; Zhang, Q. Inhibit or Evade Multidrug Resistance P-glycoprotein in Cancer Treatment. J. Med. Chem. 2018, 61, 5108–5121.
15. Desai, P. V.; Raub, T. J.; Blanco, M.-J. How hydrogen bonds impact P-glycoprotein transport and permeability. Bioorg. Med. Chem. Lett. 2012, 22, 6540–6548.
16. Myatt, J. W.; Healy, M. P.; Bravi, G. S.; Billinton, A.; Johnson, C. N.; Matthews, K. L.; Jandu, K. S.; Meng, W.; Hersey, A.; Livermore, D. G.; Douault, C. B.; Witherington, J.; Bit, R. A.; Rowedder, J. E.; Brown, J. D.; Clayton, N. M. Pyrazolopyridazine alpha-2-delta-1 ligands for the treatment of neuropathic pain. Bioorg. Med. Chem. Lett. 2010, 20, 4683–4688
17. Kuduk, S. D.; Di Marco, C. N.; Chang, R. K.; Wood, M. R.; Schirripa, K. M.; Kim, J. J.; Wai, J. M. C.; DiPardo, R. M.; Murphy, K. L.; Ransom, R. W.; et al. Development of Orally Bioavailable and CNS Penetrant Biphenylaminocyclopropane Carboxamide Bradykinin B1 Receptor Antagonists. J. Med. Chem. 2007, 39, 272–282.
18. Rafi, S. B.; Hearn, B. R.; Vedantham, P.; Jacobson, M. P.; Renslo, A. R. Predicting and Improving the Membrane Permeability of Peptidic Small Molecules. J. Med. Chem. 2012, 55, 3163–3169.
19. Kabayashi, K.; Uchiyama, M.; Takahashi, H.; Kawamoto, H.; Ito, S.; Yoshizumi, T.; Nakashima, H.; Kato, T.; Shimizu, A.; Yamamoto, I.; et al. 2-Cyclohexylcarbonylbenzimidazoles as potent, orally available and brain-penetrable opioid receptor-like 1 (ORL1) antagonists. Bioorg. Med. Chem. Lett. 2009, 19, 3096–3099.
20. Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Coleman, P. J.; Garbaccio, R. M.; Fraley, M. E.; Zrada, M. M.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; et al. Kinesin spindle protein (KSP) inhibitors. Part V: Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β-fluorination to overcome cellular efflux by P-glycoprotein. Bioorg. Med. Chem. Lett. 2007, 17, 2697–2702.
21. Shchekotikhin, A. E.; Shtil, A. A.; Luzikov, Y. N.; Bobrysheva, T. V.; Buyanov, V. N.; Preobrazhenskaya, M. N. 3-Aminomethyl derivatives of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione for circumvention of anticancer drug resistance. Bioorg. Med. Chem. 2005, 13, 2285–2291.
22. Ward, S. E.; Harries, M.; Aldegheri, L.; Andreotti, D.; Ballantine, S.; Bax, B. D.; Harris, A. J.; Harker, A. J.; Lund, J.; Melarange, R.; Mingardi, A.; Mookherjee, C.; Mosley, J.; Neve, M.; Oliosi, B.; Profeta, R.; Smith, K. J.; Smith, P. W.; Spada, S.; Thewlis, K. M.; Yusaf, S. P. Discovery of N-[(2S)-5-(6-fluoro-3-pyridinyl)-2,3-dihydro-1H-inden2-yl]-2-propanesulfon-amide, a novel clinical AMPA receptor positive modulator. J. Med. Chem. 2010, 53, 5801−5812.
23. Hitchcock, S. A. Structural Modifications that Alter the P-Glycoprotein Efflux Properties of Compounds. J. Med. Chem. 2012, 55, 4877–4895.
还木有评论哦,快来抢沙发吧~