

图1 分子胶环孢素A和FK506的结合模式
01
分子胶和PROTACs的异同



02
老药也可能是潜在的分子胶
但是,直到2010年科学家才发现它是如何导致肢体畸形和其它发育缺陷的,那是因为它像分子胶一样诱导致畸蛋白的降解。由伊藤和安藤领导的一组日本科学家鉴定出Cereblon(CRBN)是一种沙利度胺结合蛋白。
事实上,沙利度胺与CRBN上高度保守的三-色氨酸空腔结合,并与受损DNA结合蛋白-1(DDB1)和Cul4A 类型E3泛素连接酶形成E3泛素连接酶复合物,随后诱导新目标蛋白(锌指转录因子)的降解,如:IKZF1、IKZF3、CK1α,和SALL4蛋白。[5]




03
三元复合物作为新的药物开发方法

勃林格殷格翰公司试图开发BCL6抑制剂,以破坏其与干扰BCL6致癌效应转录抑制因子的相互作用。通过对170万种化合物的高通量筛选,得到了202个活性候选化合物。在其构效关系研究中,观察到一部分化合物诱导BCL6泛素化和蛋白酶体依赖性降解。

有趣的是,他们还发现CDK12抑制剂CR8是一种选择性降解Cyclin-K蛋白的小分子化合物,后续还发现该抑制剂结合将CDK12转化为Cul4 类型E3泛素连接酶复合物的底物受体。这导致Cyclin-K蛋白的特异性招募,并诱导其泛素化和降解。这项研究的作者指出,这些由靶向结合小分子诱导的全新相互作用可能是开发各种类型分子胶型降解剂的另一种策略。[13]

04
结论


1. Liu, J.; Farmer, J. D.; Jr., Lane, W. S.; Friedman, J.; Weissman, I.; Schreiber, S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991, 66, 807–815.
2. Schreiber, S. L. The Rise of Molecular Glues. Cell 2021, 184, 3–9.
3. Peel, M.; Scribner, A. Cyclophilin Inhibitors as Antiviral Agents. Bioorg. Med. Chem. Lett. 2013, 23, 4485–4492.
4. Yang, J.; Li, Y.; Aguilar, A.; Liu, Z.; Yang, C.-Y.; Wang, S. Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. J. Med. Chem. 2019, 62, 9471–9487.
5. Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; HOtta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a Primary Target of Thalidomide Teratogenicity. Science 2010, 327, 1345–1350.
6. Lopez-Girona, A.; Mendy, D.; Ito, T.; Miller, K.; Gandhi, A. K.; Kang, J.; Karasawa, S.; Carmel, G.; Jackson, P.; Abbasian, M.; et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012, 26, 2326–2335.
7. Che, Y.; Gilbert, A. M.; Shanmugasundaram, V.; Noe, M. C. Inducing protein-protein interactions with molecular glues. Bioorg. Med. Chem. Lett. 2018, 28, 2885–2592.
8. Han, T.; Goralski, M.; Gaskill, N.; Capota, E.; Kim, J.; Ting, T. C.; Xie, Y.; Williams, N. S.; Nijhawan, D. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 2017, 356, eaal3755.
9. Kerres, N.; Steurer, S.; Schlager, S.; Bader, G.; Berger, H.; Caligiuri, M.; Dank, C.; Engen, J. R.; Ettmayer, P.; Fischerauer, B.; et al. Chemically Induced Degradation of the Oncogenic Transcription Factor BCL6. Cell Reports 2017, 20, 2860–2875.
10. Anon; BI-3802 Promotes Polymerization and Degradation of Oncogenic BCL6. Cancer Discovery 2021, 11, 220.
11. Slabicki, M.; Yoon, H.; Koeppel, J.; Nitsch, L.; Roy Burman, S. S.; Di Genua, C.; Donovan, K. A.; Sperling, A. S.; Hunkeler, M.; Tsai, J. M.; et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 2020, 588, 164–168.
12. Mayor-Ruiz, C.; Bauer, S.; Brand, M.; Kozicka, Z.; Siklos, M.; Imrichova, H.; Kaltheuner, I. H.; Hahn, E.; Seiler, K.; Koren, A. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 2020, 16, 1199–1207.
13. Slabicki, M.; Kozicka, Z.; Petzold, G.; et al. The CDK Inhibitor CR8 Acts as a Molecular Glue Degrader That Depletes Cyclin K. Nature 2020, 585, 293–297.
还木有评论哦,快来抢沙发吧~